Pages

Enabling the design of hybrid glasses

A new method of manufacturing glass could lead to the production of “designer glasses” with applications in advanced photonics, whilst also facilitating industrial scale carbon capture and storage. An international team of researchers, writing in Nature Communications, report how they have managed to use a relatively new family of sponge-like porous materials to develop new hybrid glasses.
The work revolves around a family of compounds called metal-organic frameworks (MOFs), which are cage-like structures consisting of metal ions, linked by organic bonds. Their porous properties have led to proposed application in carbon capture, hydrogen storage and toxic gas separations, due to their ability to selectively adsorb and store pre-selected target molecules, much like a building a sieve which discriminates not only on size, but also chemical identity.

DNA “clews” helps shuttle CRISPR-Cas9 gene-editing tool into cells

Researchers from North Carolina State Univ. and the Univ. of North Carolina at Chapel Hill have for the first time created and used a nanoscale vehicle made of DNA to deliver a CRISPR-Cas9 gene-editing tool into cells in both cell culture and an animal model.

The CRISPR-Cas system, which is found in bacteria and archaea, protects bacteria from invaders such as viruses. It does this by creating small strands of RNA called CRISPR RNAs, which match DNA sequences specific to a given invader. When those CRISPR RNAs find a match, they unleash Cas9 proteins that cut the DNA. In recent years, the CRISPR-Cas system has garnered a great deal of attention in the research community for its potential use as a gene editing tool—with the CRISPR RNA identifying the targeted portion of the relevant DNA, and the Cas protein cleaving it.

Gaming computers offer huge, untapped energy savings potential

In the world of computer gaming, bragging rights are accorded to those who can boast of blazing-fast graphics cards, the most powerful processors, the highest-resolution monitors, and the coolest decorative lighting. They are not bestowed upon those crowing about the energy efficiency of their system. If they were, gaming computers worldwide might well be consuming billions of dollars less in electricity use annually, with no loss in performance, according to new research from Lawrence Berkeley National Laboratory (Berkeley Lab).

In the first study of its kind, Berkeley Lab researcher Evan Mills co-authored an investigation of the aggregate global energy use of personal computers designed for gaming—including taking direct measurements using industry benchmarking tools—and found that gamers can achieve energy savings of more than 75% by changing some settings and swapping out some components, while also improving reliability and performance.